summaryrefslogtreecommitdiff
path: root/src/displayapp/screens/Calculator.cpp
blob: 8e36c1a2d209d92caf2a56309d05e948ca29abf3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
#include "Calculator.h"
#include <string>
#include <cfloat>
#include <cmath>
#include <map>
#include <memory>

using namespace Pinetime::Applications::Screens;

namespace {
  template <typename X, uint8_t max_stack_len> struct Stack {
    // Basic stack data type without dynamic allocations
    X data[max_stack_len];
    uint8_t stack_len = 0;
    inline auto   size()   { return stack_len;                }
    inline bool   empty()  { return size() == 0;              }
    inline bool   full()   { return size() == max_stack_len;  }
    inline X&  top()    { return data[stack_len-1];        }
    inline X&  pop()    { return data[--stack_len];        }
    inline X&  push()   { return data[stack_len++];        }
    inline void push(X x) { X& datum{ push() }; datum = x; }
  };
  template <uint8_t max_stack_len> struct CalcStack : public Stack<double, max_stack_len> {
    typedef Stack<double, max_stack_len> Super;
    inline void pushValue(double value) {
      Super::push(value);
    }
    bool pushOperator(char op) {
      if (Super::size() < 2) return false;
      double* node0 = Super::data + Super::stack_len;
      // Call this only when stack_len >= 2
      // Evaluate subexpressions as soon as possible
      // Inf and NaN take care of error handling in case of non-finite results
      auto& val2 { node0[-2] };
      auto val1 = node0[-1];
      switch (op) {
      case '^':
        val2 = pow(val2, val1);
        break;
      case 'x':
        val2 *= val1;
        break;
      case '/':
        val2 /= val1;
        break;
      case '+':
        val2 += val1;
        break;
      case '-':
        val2 -= val1;
        break;
      default:
        return false;
      }
      Super::stack_len--;
      return true;
    }
  };

  template <typename Input, typename Float, typename Sign> inline bool parseFloat(Input& i, Float& f, Sign& s) {
    f = 0;
    int8_t dot_position = -1;
    while (!i.empty()) {
      auto& c = i.top();
      if ('0' <= c && c <= '9') {
        if (dot_position >= 0) dot_position++;
        f *= 10;
        f += c - '0';
      } else if ('.' == c) {
        if (dot_position >= 0) return false;
        dot_position = 0;
      } else break;
      i.pop();
    }
    while (dot_position-- > 0) f /= 10;
    if (s < 0) { f = -f; }
    return true;
  }

  uint8_t getPrecedence(char op) {
    switch (op) {
      case '^':
        return 4;
      case 'x':
      case '/':
        return 3;
      case '+':
      case '-':
        return 2;
    }
    return 0;
  }

  bool leftAssociative(char op) {
    switch (op) {
      case '^':
        return false;
      case 'x':
      case '/':
      case '+':
      case '-':
        return true;
    }
    return false;
  }
};

static void eventHandler(lv_obj_t* obj, lv_event_t event) {
  auto calc = static_cast<Calculator*>(obj->user_data);
  calc->OnButtonEvent(obj, event);
}

Calculator::~Calculator() {
  lv_obj_clean(lv_scr_act());
}

static const char* buttonMap1[] = {
  "7", "8", "9", "/", "\n",
  "4", "5", "6", "x", "\n",
  "1", "2", "3", "-", "\n",
  ".", "0", "=", "+", "",
};

static const char* buttonMap2[] = {
  "7", "8", "9", "(", "\n",
  "4", "5", "6", ")", "\n",
  "1", "2", "3", "^", "\n",
  ".", "0", "=", "+", "",
};

Calculator::Calculator(DisplayApp* app, Controllers::MotorController& motorController) : Screen(app), motorController {motorController} {
  result = lv_label_create(lv_scr_act(), nullptr);
  lv_label_set_long_mode(result, LV_LABEL_LONG_BREAK);
  lv_label_set_text_static(result, "0");
  lv_obj_set_size(result, 180, 60);
  lv_obj_set_pos(result, 0, 0);

  returnButton = lv_btn_create(lv_scr_act(), nullptr);
  lv_obj_set_size(returnButton, 52, 52);
  lv_obj_set_pos(returnButton, 186, 0);
  lv_obj_t* returnLabel;
  returnLabel = lv_label_create(returnButton, nullptr);
  lv_label_set_text_static(returnLabel, "<=");
  lv_obj_align(returnLabel, nullptr, LV_ALIGN_CENTER, 0, 0);
  returnButton->user_data = this;
  lv_obj_set_event_cb(returnButton, eventHandler);

  buttonMatrix = lv_btnmatrix_create(lv_scr_act(), nullptr);
  lv_btnmatrix_set_map(buttonMatrix, buttonMap1);
  lv_obj_set_size(buttonMatrix, 240, 180);
  lv_obj_set_pos(buttonMatrix, 0, 60);
  lv_obj_set_style_local_pad_all(buttonMatrix, LV_BTNMATRIX_PART_BG, LV_STATE_DEFAULT, 0);
  buttonMatrix->user_data = this;
  lv_obj_set_event_cb(buttonMatrix, eventHandler);
}

bool Calculator::Eval() {
  Stack<char, 32> input;
  for (int8_t i = position - 1; i >= 0; i--) {
    input.push(text[i]);
  }
  CalcStack<16> output;
  Stack<char, 32> operators;
  bool expectingNumber = true;
  int8_t sign = +1;
  double resultFloat;
  uint32_t lower, upper;
  while (!input.empty()) {
    if (input.top() == '.') {
      input.push('0');
    }

    if (isdigit(input.top())) {
      if (!parseFloat(input, output.push(), sign)) return false;
      sign = +1;
      expectingNumber = false;
      continue;
    }

    if (expectingNumber) {
      switch (input.top()) {
        case '-':
          sign *= -1;
          [[fallthrough]];
        case '+':
          input.pop();
          continue;
      }
    }

    char next = input.top();
    input.pop();

    switch (next) {
      case '+':
      case '-':
      case '/':
      case 'x':
      case '^':
        // while ((there is an operator at the top of the operator stack)
        while (!operators.empty()
               // and (the operator at the top of the operator stack is not a left parenthesis))
               && operators.top() != '('
               // and ((the operator at the top of the operator stack has greater precedence)
               && (getPrecedence(operators.top()) > getPrecedence(next)
                   // or (the operator at the top of the operator stack has equal precedence and the token is left associative))
                   || (getPrecedence(operators.top()) == getPrecedence(next) && leftAssociative(next)))) {
          // need two elements on the output stack to add a binary operator
          if (!output.pushOperator(operators.top())) return false;
          operators.pop();
        }
        operators.push(next);
        expectingNumber = true;
        break;
      case '(':
        if (expectingNumber) {
          if (sign < 0) {
            // Handle correctly expressions like: '-(5+11)' or '2*-(5+11)'
            sign = 1;
            output.pushValue(0);
            operators.push('-');
          }
        } else {
          // We expect there to be a binary operator here but found a left parenthesis.
          // This occurs in terms like this: a+b(c).
          // This should be interpreted as a+b*(c)
          operators.push('x');
        }
        operators.push(next);
        expectingNumber = true;
        break;
      case ')':
        while (operators.top() != '(') {
          // need two elements on the output stack to add a binary operator
          if (!output.pushOperator(operators.top())) return false;
          operators.pop();
          if (operators.empty()) return false;
        }
        // discard the left parentheses
        operators.pop();
    }
  }
  while (!operators.empty()) {
    if (!output.pushOperator(operators.top())) return false;
    operators.pop();
  }
  // perform the calculation
  // assert(output.size() == 1);
  resultFloat = output.data[0]; // this is the same as output.top() when output.size() == 1, but may reduce binary size
  // make sure that the absolute value of the integral part of result fits in a 32 bit unsigned integer
  sign = (resultFloat < 0);
  if (sign) {
    resultFloat = -resultFloat;
  }
  if (!(resultFloat <= UINT32_MAX)) {
    return false; // if too large or NaN
  }
  if (sign) {
    text[0] = '-';
    position = 1;
  } else {
    position = 0;
  }
  // workaround: provided sprintf doesn't support floats
  upper = resultFloat;
  lower = round((resultFloat - upper) * 1000000);
  if (lower >= 1000000) {
    lower = 0;
    upper++;
  }
  position += sprintf(text + position, "%lu", upper);
  if (lower != 0) {
    // see if decimal places have to be printed
    position += sprintf(text + position, ".%06lu", lower);
    // remove extra zeros
    while (text[position - 1] == '0') {
      position--;
    }
  }
  return true;
}

void Calculator::Reset() {
  position = 0;
  lv_label_set_text_static(result, "0");
}

void Calculator::OnButtonEvent(lv_obj_t* obj, lv_event_t event) {
  switch (event) {
  case LV_EVENT_CLICKED:
    if (obj == buttonMatrix) {
      const char* buttonstr = lv_btnmatrix_get_active_btn_text(obj);
      if (*buttonstr == '=') {
        if (!Eval()) break;
      } else {
        if (position >= 30) break;
        text[position] = *buttonstr;
        position++;
      }
    } else if (obj == returnButton) {
      if (position > 1) {
        position--;
      } else {
        Reset();
        return;
      }
    }
    text[position] = '\0';
    lv_label_set_text_static(result, text);
    [[fallthrough]];
  default:
    return;
  }
  motorController.RunForDuration(10);
}

bool Calculator::OnTouchEvent(Pinetime::Applications::TouchEvents event) {
  switch (event) {
    case Pinetime::Applications::TouchEvents::LongTap:
      Reset();
      break;
    case Pinetime::Applications::TouchEvents::SwipeLeft:
      lv_btnmatrix_set_map(buttonMatrix, buttonMap2);
      break;
    case Pinetime::Applications::TouchEvents::SwipeRight:
      lv_btnmatrix_set_map(buttonMatrix, buttonMap1);
      break;
    default:
      return false;
  }
  return true;
}